

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

Course Syllabus

Course Code	Course Name	Credits	Contact Hours
0401552	Antennas and Waves Propagation	3	3 T

INSTRUCTOR/COORDINATOR		
Name	Dr.Rula Alrawashdeh	
Email	rular18@mutah.edu.jo rularsr18@gmail.com	
Office Hours	11:00 am-12:30 pm (Mon, Wed)	

TEXTBOOK		
Title	Antenna theory analysis and design	
Author/Year/Edition	Constantine A. Balanis/2009/ 3rd Ed	
Other Supplemental Materials		
Title	Antennas from theory to practice	
Author/Year/Edition	Yi. Huang and Kevin Boyle/ 2008/3rd Edition	

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

The following subjects are discussed in this course:

Mechanism of radiation, antennas in the communication system, antennas fundamental parameters, wire-type antennas, aperture- type antennas, propagation in air and link budget calculations, basics of arrays.

B. Pre-requisites (P) or Co-requisites (C)

Fields and Wave (0401353) (**P**)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

<u>CLO1:</u> Understand the basic parameters and properties of antennas [1].

<u>CLO2</u>: Calculate the antenna gain, directivity, radiation efficiency, Half-power beam-width and the first-null beam-width [1].

<u>CLO3</u>: **Design** different antenna types such as microstrip and horn antennas [2].

<u>CLO4</u>: Understand the principle of antennas arrays [1].

<u>CLO5</u>: Analyze and present the simulation data using the CST simulation tool [7].

B. Student Learning Outcomes (SOs) Addressed by the Course

1	2	3	4	5	6	7
✓	\checkmark					\checkmark

BRIEF LIST OF TOPICS TO BE COVERED				
List of Topics	No. of Weeks	Contact Hours		
Chapter 1: Principle of radiation.	1	3		
Chapter 2: Fundamental parameters of antennas	3	9		
Chapter 3: Wire-type antennas	3	9		
Chapter 4: Aperture-type antennas	3	9		
Chapter 5: Propagation in air, path loss and link budget calculations	2	6		
Chapter 6: Arrays	2	6		
Total	14	42		

EVALUATION				
Assessment Tool	Due Date	Weight (%)		
Mid Exam	According to the university calendar	30		
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20		
Final Exam	According to the university calendar	50		

	ABET's Students Learning Outcomes (Criterion # 3)		
	Relationship to program outcomes		
ABET 1-7		Engineering Student Outcomes	
1		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	
2	V	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	
3		an ability to communicate effectively with a range of audiences.	
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	
6		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.	
7	\checkmark	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	